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Abstract
In 2022, excess mortality in Spain was the third highest on record, surpassed only 
by 2020 and 2015. However, of that excess only 23% has been directly attributed 
to extreme heat. The problem with this figure is that the estimate is based on mod-
els that could present biases and limitations. We proposed to estimate the excess 
mortality attributable to extreme temperatures in Catalonia during the summer of 
2022, and assessing how the risk of death from these extreme heat temperatures may 
be modified by other factors, particularly socioeconomic variables. We employed a 
longitudinal ecological design covering the period from 2015 to 2022, using data 
at the health area level. We used generalized linear mixed models for all ages and 
for those aged 65 and older. These models corrected for biases by using small-scale 
geographic units and explicitly took spatial variability into account. According to 
our results, during the summer months of 2022, 49.41% of excess mortality was 
attributable to extreme heat. Not only did heatwaves increase the risk of death, but 
so too did maximum temperature extremes. Effect modifiers found to increase the 
risk of dying on days with extreme heat were namely: being 65 years or older, high 
relative humidity, extreme minimum temperature, and low income. Our results sug-
gest the following methodological considerations: (i) minimize the effects of expo-
sure misclassification by using smaller geographic units than those typically used in 
other studies; (ii) explicitly take spatial variability into account by using, for exam-
ple, a hierarchical Bayesian spatiotemporal models; and (iii) control for spatial and 
temporal dependencies.
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1  Introduction

1.1 � Summer 2022

During 2022, there was an excess of mortality throughout the world, in many cases 
only exceeded by the excess resulting from the COVID-19 pandemic in 2020. 
According to the European Mortality Monitoring system (EuroMOMO 2024), 
between July 11 and August 14, 2022, Spain had an extraordinarily high excess mor-
tality, with a particularly relevant contribution of deaths coming from the population 
aged 75 and over. Other countries, such as France, Germany (Hesse), Italy, and Eng-
land, also showed a high excess of mortality, but not to the extent as Spain (Euro-
MOMO 2024).

Official national mortality statistics are provided weekly from the 27 European 
countries or subnational regions in the EuroMOMO collaborative network, of which 
the (Spanish) ‘All-Cause Daily Mortality Monitoring System (MoMo)’ of the Insti-
tuto de Salud Carlos III is a partner.

According to the Instituto de Salud Carlos III’s data from its daily mortality sur-
veillance system (MoMo 2024), in 2022 excess mortality in Spain resulted in 30,479 
deaths. In other words, the third highest since MoMo had come into effect and only 
surpassed by the 73,222 deaths in 2020 and the 38,523 in 2015. Furthermore, 2022 
numbers were even greater than the 29,310 deaths in 2021 (the second year of the 
COVID-19 pandemic). In Catalonia, with 3567 deaths, 2022 was the fourth highest 
year of excess mortality (surpassed by 2020 (13,838 deaths), 2015 (4486 deaths), 
and 2021 (3655 deaths)) (Panel MoMo, 2024). In the summer (June to August) of 
2022, Spain presented the second highest mortality excess (20,291 deaths), sur-
passed only by 2003 (26,303 deaths) and 2015 (13,124 deaths). In Catalonia, during 
the summer months of 2022 excess mortality was 2290, which surpasses 2015 with 
its 1150 deaths (León et al. 2021; MoMo, 2024).

During the summer of 2022, Spain accumulated 41 days of extreme temperatures 
via three heatwaves. In other words, beating the previous records established in 2015 
(with two heatwaves) by 12 days, and in 2003 (also with two heatwaves) by 21 days. 
The July 2022 heatwave affected 44 of Spain’s 52 provinces, surpassing any pre-
vious record for the number of provinces affected by a heatwave. Furthermore, it 
exceeded the heatwaves of 2003, the year that had previously held the record with 38 
provinces affected and presented a greater temperature anomaly (3.7 °C higher than 
the average for the month). Besides this, the first heatwave of 2022 (between June 
12 and 18) was the second earliest on record, while the second heatwave between 
July 30 and August 15 was the most extensive and intense of those recorded until 
then (Agencia Española de Meteorología -AEMET-, 2024). Catalonia experienced 
its hottest summer since records began, surpassing 2003 in some areas. In Catalonia, 
with more than two weeks of temperatures above the usual average, the 2022 July 
heatwave was one of the most persistent (Meteocat 2022).
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It is surprising, therefore, that MoMo attributed slightly less than a quarter of 
the excess mortality directly to extreme heat during the summer months (only 4651 
deaths or 22.92% in Spain, and 371 deaths or 16.22% in Catalonia). The problem 
lies in the estimates of excess mortality attributed to extreme heat provided by 
MoMo having been obtained from a model that may present limitations and biases.

In fact, even MoMo officials themselves acknowledged that they had probably 
underestimated the effects of the temperatures (Linde 2022). In this sense, Tobías 
et al. (2023a) using the same MoMo data but redefining extreme heat, estimated that 
actual heat-attributable deaths were two and a half times higher than the official esti-
mates: 12,054 deaths—6738 in moderately high temperatures and 5316 in extreme 
temperatures; 60% of which occurred in the month of July. Using weekly counts of 
all-cause mortality according to sex and age groups from 823 contiguous regions in 
35 European countries, Ballester et al. (2023), obtained the estimate for Spain from 
Eurostat and excess mortality attributed to extreme heat was equal to 11,324 (95% 
CI 7908, 14,880); a figure very close to that of Tobías et al. (2023a).

Among the principal limitations of the MoMo model, we firstly point out the 
use of the province as a geographical unit. Spain is administratively divided into 
52 provinces, each with an average area of ​​9731 km2 (standard deviation 5102 km2, 
median 9316 km2, first quartile 6205 km2, third quartile 13,565 km2). Most impor-
tantly, it is assumed that all residents in the province were exposed to the same 
temperature values, i.e. exposure misclassification occurs. If the explanatory vari-
ables are measured inaccurately, as in this case, the estimators will be inconsistent 
(i.e. biased), tending to underestimate the effect of the variable measured with error 
(Greene 2018). Furthermore, if the between-area variability of the variables meas-
ured with error (temperature) is lower than the within-area variability, the effect of 
measurement error on the estimator can be considerable (Elliott and Savitz 2008). 
Furthermore, the MoMo model does not consider, and therefore does not control 
for, spatial dependence (closer areas look more similar than more distant ones). This 
omission is a specification error that leads to biased estimators whose variances are 
wrong. Finally, the model did not control for socioeconomic variables. In the most 
economically depressed territories, there might be a greater excess of mortality that 
can be attributed to extreme heat than in others.

Our hypothesis was that the limitations of the MoMo model implied a bias in the 
estimation of excess mortality. Thus, in this paper, we first attempt to estimate the 
excess mortality attributed to extreme heat temperatures in Catalonia in the sum-
mer of 2022 by using much smaller units of analysis, and temperature predictions 
obtained from a spatiotemporal Bayesian model, trying to solve the limitations of 
MoMo. In addition, we aim to assess how the risk of dying from these extreme 
heat temperatures may be modified by other factors, particularly socioeconomic 
variables.

1.2 � Review of the literature

The literature on the effects of extreme heat, in general, and heatwaves, in particular, 
on mortality and, to a lesser extent, morbidity predates 2022. Indeed, although the 
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summer of 2022 broke temperature records across Europe, surprisingly few studies 
quantify the impact of extreme heat on mortality, and their findings are not entirely 
consistent.

Heatwaves are becoming one of the biggest climate-related threats to human 
health, as they’ve become more frequent, intense, and longer due to climate change 
(World Health Organization 2025). This global increase in extreme heat events is 
mainly linked to rising temperatures caused by climate change (EPA 2025). For 
instance, the USA saw record numbers of heat-related deaths in 2021 and 2022, 
which were also some of the hottest years on record. In India, the situation is just as 
worrying, especially in large urban areas where high population density increases 
the risk.

Heatwaves can affect health both directly and indirectly. The direct effects include 
things like heatstroke and dehydration. The indirect effects are often more serious 
and involve worsening existing conditions like heart and lung diseases (Ebi et  al. 
2021). Studies have shown that the risk of death goes up with more intense or longer 
heatwaves, especially those that come early in the summer, when people aren’t yet 
used to the heat (World Health Organization 2025). Heat stress also impacts differ-
ent body systems, with effects on heart and lung function, kidney health, and mental 
well-being (Arsad et al. 2022).

Plenty of research shows a strong link between heatwaves and higher mortality. 
For example, some studies found that deaths go up by 28% during heatwaves (95% 
CI 15–42%) (Cheng et  al. 2018), while others reported an 11.6% increase in risk 
(95% CI 7.8–15.5%) (Kang et al. 2020). There is also evidence of more deaths from 
non-external causes, with relative risks between 1.03 and 1.09 (Arsad et al. 2022). 
Not all causes of death are affected equally—cardiovascular deaths seem especially 
sensitive, with a relative risk of 1.07 (95% CI 1.03–1.10). People with pre-existing 
breathing problems are also particularly at risk.

But these effects aren’t the same for everyone. Older people, children, and those 
with chronic illnesses are especially vulnerable (World Health Organization 2025). 
In fact, around 85% of heat-related deaths happen in people over 65. This group is 
more likely to have heart conditions, and the risk of dying during a heatwave goes 
up by 12.8% (95% CI 9.8–15.9%) (Wang et al. 2015; Zhang et al. 2018; Arsad et al. 
2022). Women are also more at risk than men, with studies showing higher relative 
risks in female populations (Yin et al. 2018; Kollanus et al. 2021). Socioeconomic 
status also matters a lot—people with lower incomes are more vulnerable, especially 
in cities where the urban heat island effect makes things worse (Nazish et al. 2024).

As for the summer of 2022, in Europe alone, it is estimated that there were 61,672 
heat-related deaths, which shows just how serious the situation was (Ballester et al. 
2023). These numbers were likely made worse by the urban heat island effect, which 
pushes city temperatures even higher. In California, a heatwave in September 2022 
also led to a sharp rise in deaths, highlighting how urgently we need better heat pro-
tection measures (EPA 2025). Still, despite these extreme events, few studies have 
really measured how deadly heatwaves are, and the ones that do often show mixed 
results.

For example, Tobias et al. (2023a) said that the number of deaths in Europe dur-
ing the 2022 heatwaves was similar to those during the deadly 2003 event. But their 
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study used national averages based on capital city temperatures and country-level 
death counts, which hides a lot of local detail. Similarly, Ballester et  al. (2023) 
reported the same number of deaths (61,672), and again Spain was one of the hard-
est-hit countries. But without more local data, we do not know exactly where or 
among which groups the risks were highest.

Freitas et al. (2022) looked at Catalonia and found that the highest excess mor-
tality in 2022 happened in rural areas and poorer neighbourhoods in cities. Older 
people and hospitalized patients were most affected. But the study didn’t model the 
temperature-mortality link directly, so it is hard to say how much of the effect was 
due to heat itself. This is a wider problem. While earlier studies (like Gasparrini 
et al. 2022) show clear socioeconomic differences in heat risk, the data for 2022 is 
mostly anecdotal or indirect.

More recently, Quijal-Zamorano et al. (2024) looked at short-term links between 
temperature and deaths at the neighbourhood level in Barcelona. Their model 
accounted for spatial differences across the city’s 73 neighbourhoods. However, they 
presented the analysis as a case study and did not give specific numbers for heat-
related mortality, which limits its usefulness.

Another gap in the literature is the focus on officially defined heatwaves. Many 
studies ignore very hot days that don’t meet the official threshold but are still dan-
gerous. Tobias et al. (2023a), for example, found that moderately hot days actually 
caused more excess deaths (6738) than the officially defined.

2 � Methods

2.1 � Design

We used a time-series ecological design, from 2015 to 2022, with information on 
daily mortality, maximum temperature, and other meteorological variables (mini-
mum temperature and relative humidity), as well as information on the average net 
income per person. All the variables were analysed at the (contextual) level of 288 
health areas (ABS is the acronym in Catalan: Área Básica de Salud) that are man-
aged by the public health service and distributed throughout the four provinces of 
Catalonia, Spain. We used a sample that covered 6.3 million people, accounting for 
81.6% of the population of Catalonia and 76% of the ABSs into which Catalonia is 
divided.

2.2 � Data sources

Daily deaths from all causes for all ages and 65 years and older were obtained from 
the Information System for the Development of Research in Primary Care (SIDIAP 
in Catalan) (Recalde et al. 2022). The data were observed at an ecological level for 
each ABS.

We obtained information on the semi-hourly levels of the meteorological vari-
ables (maximum and minimum temperatures and relative humidity) for 2015–2022 
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from the 180 automatic meteorological stations in the Network of Automatic Mete-
orological Stations (XEMA in Catalan), excluding 12 meteorological stations that 
are at an altitude of 1500 m or more and which were active in the period (open data) 
(Departament d’Acció Climàtica, Alimentació i Agenda Rural, 2024). We averaged 
the semi-hourly data to obtain the daily data.

The average net incomes per person from 2015 to 2019 were obtained from the 
Spanish National Statistics Institute (INE in Spanish) (INE 2024a). This variable 
was observed at the census track level. Using the population of each of the census 
tracts as weights (INE 2024b was the source of the total population of the census 
tract and of the population of the census tract by age and sex), we calculated the 
weighted average of the values ​​at the census tracts that composed the ABS to obtain 
their value at ABS level. Finally, for each ABS we calculated the average from 2015 
to 2019.

2.3 � Excess mortality attributed to extreme temperatures

2.3.1 � The MoMo model

Using data corresponding to the 288 ABSs in Catalonia for the period 2015–2022, 
we first applied the model used by the MoMo to predict excess all-cause mortality 
attributable to heat extremes in those ABSs.

where the subindexes i and t indicate the province and the day, respectively; �it is 
the mathematical expectation of Yit , E

(
Yit

)
= �it( i.e. the conditional risk of dying in 

province i on day t ); and �s are the coefficients of the explanatory and control vari-
ables. ( e� is the relative risk associated with each of them.)

The independent variables used to fit the model were: (i) trend, modelled as a 
rigid cubic spline (of order 1) by province; (ii) a cyclic spline (of order 6), to collect 
the annual seasonality of mortality, likewise by province; and (iii) the accumulated 
thermal overcharge variable (ATO*) measuring the effect of maximum temperature, 
as a randomized effect between provinces, using mixed models (Díaz-Jiménez et al. 
2015a). The ATO is a synthetic variable that measures the excess of temperature 
above a trigger temperature. The trigger thresholds for mortality due to excess maxi-
mum temperature assigned to each province a maximum critical temperature from 
which an increase in mortality was observed (Díaz-Jiménez et al. 2015b).

The ATO* was calculated as (Díaz-Jiménez et al. 2015a):

where for each province i, ATOi,t - k = Maximum temperature
i,t−1−

Trigger temperature
i
 (k = 1,2,…,7).

In the model, the death rate was adjusted, including the population of each age 
group, sex, and province (Populationi) as an offset (Díaz-Jiménez et al. 2015a).

(1)log
(
�it
)
= �0 + �1iATO

∗
it
+ spline

(
trendi, 1

)
+ spline

(
cyclici, 6

)
+ offset

(
log

(
Populationi

))

ATO
∗
t
=

√
ATOt−1 + ATOt−2 ∗ 0.8 + ATOt−3 ∗ 0.82 + ATOt−4 ∗ 0.83 + ATOt−5 ∗ 0.84 + ATOt−6 ∗ 0.85 + ATOt−7 ∗ 0.86
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Deaths attributable to excess in temperature were calculated as follows: (i) the 
model was adjusted with the independent variables of time and temperature (i.e. 
ATO*), thus obtaining the estimate of expected deaths with the effect of time and 
temperature; (ii) the model was adjusted with the independent time variables but 
without the temperature variables, thus obtaining the base estimate of expected 
deaths without the effect of temperature; and (iii) the difference between both esti-
mates results in deaths attributable to excess of temperature (Díaz-Jiménez et  al. 
2015a).

2.3.2 � Our model

Our hypothesis was that the limitations of the MoMo model introduce bias into the 
estimation of excess mortality attributable to extreme heat. Accordingly, our model 
was designed to address these limitations. There are six main differences between 
our model and that of the MoMo model. The two most important relate to sources 
of bias which, if not corrected, would likely underestimate the effects of high maxi-
mum temperature on mortality.

First, we used a much smaller geographic unit than the province: the ABS. Thus, 
while Catalonia is composed of four provinces, it is divided into 379 ABSs (of 
which we have information for 288). Of course, we were not free from exposure 
misclassification. However, if the within-area exposure variability is minimized and 
the between-area exposure variability is maximized, the effect of measurement error 
on the estimator consistency may be negligible (Elliott and Savitz 2008). As can be 
seen in Table S1 in the Supplementary material, by using ABSs we managed to min-
imize the within-area exposure variability and maximize the between-area exposure 
variability of the maximum temperature.

Second, the MoMo model considered that the temperature to which each subject 
is exposed is the average of the observed temperatures at the meteorological stations 
in the province. However, when there is a spatial variation in the study region, that 
is, in this case, between the different meteorological stations within the province, 
the use of the average can lead to bias and the underestimation of the health effect 
of interest (Wannemuehler et al. 2009). Furthermore, when the exposure is consid-
ered a representation of the average level of the true exposure across a population, 
we incur the so-called Berkson bias, also affecting the precision of the estimates. In 
our model, instead of using the observed temperature values at the meteorological 
stations of the ABS (40% of which did not have any meteorological stations), we 
used instead a hierarchical Bayesian spatiotemporal model which explicitly took this 
spatial variability into account, to make spatiotemporal predictions of the maximum 
and minimum temperature values as well as the relative humidity in each one of the 
ABSs. This approach gave us unbiased estimators with correct variances. (Details 
can be found in Saez and Barceló (2022)).

Third, trigger temperatures in the MoMo model were estimated for each province 
from the relationship between mortality and maximum temperature thus obtaining a 
single value for each province, whereas we considered the 95th percentile of the fre-
quency distribution of the daily values of the spatiotemporal prediction of the maxi-
mum temperature in the period 2016–2021 (excluding the very possible outliers of 
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2015 and 2022) for each of the ABSs and each of the summer months (i.e. June, 
July, August, and September) as the trigger temperature. The choice of the 95th per-
centile was based on the definition from Spanish Ministry of Health’s National Plan 
for Preventive Actions Against the Effects of Excess Temperatures on Health (Min-
isterio de Sanidad, Gobierno de España 2023; Tobías et al. 2023a) (see Table S2 in 
Supplementary material).

Fourth, in the MoMo model the coefficients associated with each lag of the ATO, 
although province-specific, were equal to 0.8 k−1, where k denotes lag. It is possible 
that the coefficients could vary not only by province, but also for each lag, in which 
case the estimators could be biased. We allowed the coefficients to be specific to 
each ABS and for each of the lags.

Fifth, the MoMo model did not control for spatial dependence. This omission 
led to biased estimators and wrong variances. We controlled for spatial dependence 
using a structured random effect (see below).

Finally, the MoMo model used a Poisson link. This link does not control for 
heteroscedasticity. In nonlinear models, this leads to biased estimators and wrong 
variances. Since the dependent variables were counting variables, the feasible 
approaches within the GLMM’s family were the Poisson and negative binomial 
regression models. To allow for overdispersion, that is, when the actual variance 
is greater than the theoretical variance, or, in other words, to control for heteroske-
dasticity, we used negative binomial links. Furthermore, since many ABSs did not 
report any deaths on many days, we used zero-inflated counterpart links. Among 
the possibilities offered by the Integrated Nested Approximation (INLA) (Rue et al. 
2009 and 2017), the best fit (understood as the link with the lowest WAIC [10]) was 
achieved with a zero-inflated negative binomial type 1. The log likelihood of this 
link was as follows:

where weighti denotes the probability that in a specific ABS i , and on a given day t , 
there was at least one death.

Furthermore, albeit a difference that had no impact on the properties of the esti-
mators is while in the MoMo model the trend and the annual seasonality were mod-
elled as a rigid and cyclic cubic spline of orders 1 and 6, respectively, both by prov-
ince, in our model we controlled for annual trend and seasonality using structured 
random effects, equivalent to smoothers (see below).

In particular, we used the following generalized linear mixed model (GLMM):

where in this case, the subindexes i and t indicate the ABS, and the day, respec-
tively; �it is the conditional risk of dying in ABS i on day t ; Populationi is the popu-
lation at risk of being a case (death) in ABS i and on day t (i.e. the population of the 
ABS); and �i, S, �it , �sit denote random effects.

Prob
(
yi|…

)
= weighti1[y=0] +

(
1 − weighti

)
× Negative Binomial

(
yi
)

(2)

log
(
�it
)
= �0 +

7∑

k=1

�1i,kATOi,t−k + �i + S
(
ABSi

)
+ �it + �sit + offset

(
log

(
Populationi

))
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We included four random effects in the models. First, �i , a random effect indexed on 
ABS. This was unstructured (independent and identically distributed random effects), 
and captured individual heterogeneity, that is to say, unobserved confounders specific 
to the small area and invariant in time.

Second, in the model we included �it , a structured random effect (random walk of 
order one) indexed on time trend ( t = 1,2,…,2783) and specific to each ABS, to con-
trol the temporal dependency. Following the integrated nested Laplace approximations 
(INLA) approach (Rue et al. 2009 and 2017) when, as in our case, the random effects 
are indexed on a continuous variable, they can be used as smoothers to model nonlin-
ear dependency on covariates in the linear predictor. Among the different smoothers 
available (i.e. autoregressive of order one, random walk of order one and random walk 
of order two), we chose the random walk of order 1 because, in addition to obtaining 
a moderate smoothing, it provided the highest predictive accuracy, measured by the 
Watanabe–Akaike information criterion (WAIC) (Watanabe 2010).

We also included �sit , a structured random effect (cyclic random walk of order 2) 
indexed on month ( t = June, July, August, September) and also specific to each ABS, in 
order to control seasonality.

Finally, we included the structured random effect, S(small area), to control spatial 
dependency. That is to say, the fact is that small areas that are close in space show more 
similar mortality than areas that are not close.

The spatially structured random effect S was normally distributed with zero mean 
and a Matérn covariance function:

where K� is the modified Bessel function of the second type and order 𝜈 > 0 . 
� is a smoother parameter, �2 is the variance, and 𝜅 > 0 is related to the range 
( � =

√
8�∕� ), the distance to which the spatial correlation is close to 0.1 (Lindgren 

et al. 2011).

2.4 � Assessing the risk of dying from extreme temperatures

To accomplish our second objective, to assess how the risk of dying from these extreme 
heat temperatures may be modified by other variables, particularly socioeconomic vari-
ables, we estimated two GLMMs, one for maximum temperature extremes and the 
other for heatwaves, both stratified for all ages and 65 years and older:

where �it′ is the conditional risk of a death (all ages and 65 years and older) in ABS 
i on day t , during the months June to September from 2015 to 2022; extreme heat 

Cov
(
S
(
xi
)
, S
(
xi�
))

=
�2

2�−1Γ(�)

(
κxi − xi�

)�
K�

(
κxi − xi�

)

(3)

log
(
�it�

)
= �0 + cbi

(
Extreme heati,t−k

)
+

4∑

k=2

�2k,iQIncomek,i

+ cbi
(
maximum temperaturek,i

)

+ �i + S
(
ABSi

)
+ �it + �its + offset

(
log

(
Populationi

))
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denotes an indicator of maximum temperature extreme or heatwave; QIncome is an 
indicator of the quartile of average net income per person in which the ABS i is 
located (being the 4th quartile, i.e. the most economically favoured ABS, as the ref-
erence); maximum temperature is considered in ABS i on day t ; cb

i
 denotes two-

dimensional function space that captures the dependency structure across both the 
predictor’s domain and the lag dimension (i.e. cross-basis functions) (Gasparrini 
2014); �i is the unstructured random effect capturing individual heterogeneity; �it 
and �itsare the structured random effects, capturing trend and annual seasonality; S() 
is the structured random effects controlling spatial dependence (all of the random 
effects defined above); and Population denotes the population of the ABS i.

Note the subscript in the cross-basis functions and the coefficients, denoting that 
they were specified separately for each ABS.

In each of the ABSs, the maximum temperature extreme was defined as an indi-
cator that the (spatiotemporal prediction of) maximum temperature exceeded the 
trigger temperature on a given day (1 extreme, 0 other case), while heatwave was an 
indicator that maximum temperature extremes occurred three or more days in a row 
at least 10% of the weather stations (Ministerio de Sanidad, Gobierno de España, 
2023) (1 heatwave, 0 other case). As before, trigger temperature was defined as the 
95th percentile of the frequency distribution of the daily values ​​of the spatiotempo-
ral prediction of the maximum temperature during the summer months in the period 
2016–2021 in each one of the ABSs.

Cross-basis methods allowed us to use the distributed lag nonlinear models 
(DLNM) approach (Gasparrini et al. 2010; Gasparrini et al. 2011; Gasparrini 2014; 
Gasparrini et al. 2016; Gasparrini et al. 2022; Mistry and Gasparrini 2024). DLNM 
methods allowed us to simultaneously model the effects both maximum and extreme 
temperatures (extreme maximum temperatures and heatwaves), as well as the lag 
structure of these variables, have on the risk of death (all ages and subjects aged 
65 years and older). The lags of the maximum temperature (up to 5), of the maxi-
mum temperature extremes (lag 7), and of the heatwaves (lag 3) were those corre-
sponding to the models {3} with the highest WAIC (see Table S3 in Supplementary 
material). To capture the nonlinearity of the effects of the predictors, we built basis 
matrices, using natural cubic splines (with two equally spaced knots) for maximum 
temperature, and defined intervals (strata) for indicator variables (extreme maximum 
temperature, heatwaves, high relative humidity—fourth quartile) (Gasparrini et  al. 
2011; Lowe et al. 2021). We also used the WAIC to select both the functional forms 
for constructing t the basis matrices and the optimal placement of the knots.

We allowed interactions between extreme heat and: (i) minimum temperature 
extremes (defined in the same way as the maximum temperature extremes, but with 
spatiotemporal prediction of minimum temperature and trigger minimum tempera-
ture); (ii) high relative humidity (fourth quartile); and (iii) average net income per 
person (income hereinafter) quartiles. Furthermore, we allowed third-order interac-
tions between extreme heat, extremes of minimum temperature, and high relative 
humidity and income quartiles.

Once the models {3} had been estimated, we calculated the total effects of the 
variables of interest (extreme maximum temperature and heatwave), � , as the sum of 
the (statistically significant) effects of the occurrence of the variable throughout the 
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lag structure. By exponentiating the total effects, we obtained the relative risks, RR 
(of the main effects), RR = e�.

As regard the interactions, the risk of dying on a day with extreme maximum 
temperatures or a heatwave can be calculated by multiplying the relative risks of the 
main effect and the interaction. In the case of a first-order interaction, for example: 
RR = e�main effect+�interaction = e�main effecte�interaction. , while in the case of third-order interaction: 
RR = e�main effecte�1st order interaction.e�2nd order interaction..

As explained above, to control for heteroskedasticity and given that many ABSs 
did not report any deaths on many days, we used a zero-inflated negative binomial 
type 1 as the link.

In all cases, the inferences were made following a Bayesian perspective, using 
the experimental mode (van Niekerk et al. 2024) of the integrated nested Laplace 
approximation (INLA) approach (Rue et  al. 2009 and 2017). We used priors that 
penalize complexity (called PC priors). These priors are robust in the sense that they 
do not impact the results (Simpson et al. 2017). To model the distributed lag nonlin-
ear models, we use the DLNM package (version 2.4.0) (Gasparrini et al. 2011).

3 � Results

In Table 1 and Fig. 1, we provide some descriptives of the meteorological variables. 
In Fig. 1, in addition to the fact that maximum temperatures were much higher in 
2022 (perhaps except for September), the extent of the territories with the highest 
maximum temperatures was much greater in the summer of 2022 than in the sum-
mers of 2015–2021 (even September). Note especially these two behaviours in June 
2022. 

As we see in Table 1, five heatwaves occurred in 2022, while between 2009 and 
2015 there were 1.5 median heatwaves each year (2016, 2018, and 2020 one wave; 
2015, 2021, and 2019 two waves). July 2022 had twice as many heatwaves as any 
month of July from 2015 to 2021. The median duration of heatwaves in 2022 (except 
September) was almost twice as long as the heatwaves from 2015 to 2021. The aver-
age maximum temperature (according to the median) in the summer of 2022 (except 
September) was slightly more than 2 °C higher than those of the period 2015–2021. 
In June 2022, it was 3.3 °C higher than the June months from 2015 to 2021.

In relation to the period 2015–2021, in the summer of 2022 (except September): 
the average minimum temperature (median) was between 0.83 and 1.92 °C higher, 
while the mean average temperature (median) was between 1 and 2.2  °C higher 
than those of the period 2015–2021. In June 2022, it was 2 °C higher than the June 
months from 2015 to 2021. As for the average (median) relative humidity in the 
summer of 2022, this was between 2 and 3.6% (June, July, and September) and 5.4% 
(August), i.e. higher than the period 2015–2021. Furthermore, compared to the 
2015–2021 period, during heatwaves, the maximum temperature was 2.7 °C higher 
in July, and relative humidity was 4.54% higher in August and, above all, 14.15% 
higher in September. It is also worth noting that in September 2022, the minimum 
temperature on extreme days (including heatwave days) was about 1 °C higher.
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The estimates of excess mortality attributed to maximum temperature extremes 
are shown in Table 2. We estimated that, during the summer months of 2022, the 
excess mortality attributed to extreme heat was 49.41% (15.37% in MoMo). This 
excess is four times higher than that attributed to extreme heat in the summers of 
2015 to 2019.

The results of the model estimation to assess the risk of dying from extreme 
maximum temperatures and heatwaves (main), as well as the first-order interactions 
(interactions), are shown in Figs. 2 and 3. We see that both heatwaves and extreme 
maximum temperature increased the risk of dying: 32.3% in the case of extreme 
maximum temperatures and 15.3% in the case of heatwaves. The risk of dying 
among individuals aged 65 years or older was similar for both extreme maximum 
temperatures and heatwaves, with estimated risks of 50.8% and 53.4%, respectively. 
This risk was almost double that of other subjects, especially in heatwaves. In both 
cases, all ages and 65 years or older, the effect of a heatwave on mortality occurs 
earlier (after 3  days) than with extreme maximum temperatures, which appeared 
after 7 days.

As regards first-order interactions, the risk of dying on a day with extreme tem-
peratures (both maximum temperatures and heatwaves) and high relative humidity 

Table 2   Estimation of excess mortality attributed to maximum temperature extremes according to the 
MoMo model and our model

Number of deaths Observed Excess deaths attributed to 
extreme heat

No COVID COVID-19 MoMo model Our model

2022
 June 4366 358 688 1854
 July 5190 873 708 2779
 August 4532 230 813 2241
 September 4447 96 641 2284
 June–September 18,535 1557 2850 9158

Medians
2015–2019
 June 3235 334 577
 July 3214 359 652
 August 3375 263 651
 September 3417 298 681
 June–September 13,241 1254 2561

2020–2021
 June 3615 144 28 181
 July 3841 224 43 274
 August 4389 657 43 302
 September 4004 309 17 303
 June–September 16,248 267 131 1060
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(fourth quartile) was much higher than a day with only extreme temperatures (60% 
higher, RRmain+interaction = 1.516 vs. RRextreme = 1.323, in extreme maximum tem-
peratures and 35% higher, RRmain+interaction = 1.4078 vs. RRheatwave = 1.153, in 
heatwaves) (see Figs.  2a and 3a). In the case of the risk of dying for those aged 
65  years or older, the risk was 50.98% higher in extreme maximum temperatures 
(RRmain+interaction = 1.767 vs. RRextreme = 1.508) and 279% higher in heatwaves 
(RRmain+interaction = 2.489 vs. RRheatwave = 1.534) (see Figs. 2b and 3b).

The risk of dying on a day with extreme temperatures was almost three times 
higher (RRmain+interaction = 1.877 vs. RRextreme = 1.323) in the case of extreme 
maximum temperatures, and almost double (RR = 1.2948main+interaction vs. 
RRheatwave = 1.153) in the case of heatwaves, in those ABSs located in the first 
quartile (i.e. the most economically disadvantaged), compared to that of the least 

Fig. 2   a Results of the model estimation to assess the risk of dying from extreme temperatures, as well 
as the first-order interactions. Models adjusted for maximum temperature, average net income per person 
from the ABS, as well as individual heterogeneity; trend and annual seasonality; and spatial dependence. 
Population was included as offset. b Results of the model estimation to assess the risk of dying from 
extreme temperatures, as well as the first-order interactions. Models adjusted for maximum temperature, 
average net income per person from the ABS, as well as individual heterogeneity; trend and annual sea-
sonality; and spatial dependence. Population was included as offset
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economically disadvantaged ABSs (fourth quartile). In the case of subjects aged 
65 years or older, the risk was practically triple in extreme maximum tempera-
tures (RRmain+interaction = 2.420 vs. RRextreme = 1.508) but 55.24% lower in heat-
waves (RRmain+interaction = 1.295 vs. RRheatwave = 1.534) (see Figs. 2b and 3b).

The risk of dying on a day with extreme maximum temperatures in ABSs 
located in the second income quartile was 82.7% higher than in those located 
in the first quartile (in the case of heatwaves in all ages and in all the cases in 
those subjects 65 years or older, the 95% credibility intervals contained unity, and 
therefore, they were not found to be statistically significant).

Fig. 3   a Results of the model estimation to assess the risk of dying from heatwaves, as well as the first-
order interactions. Models adjusted for maximum temperature, average net income per person from the 
ABS, as well as individual heterogeneity; trend and annual seasonality; and spatial dependence. Popula-
tion was included as offset. b Results of the model estimation to assess the risk of dying from heatwaves, 
as well as the first-order interactions. Models adjusted for maximum temperature, average net income 
per person from the ABS, as well as individual heterogeneity; trend and annual seasonality; and spatial 
dependence. Population was included as offset
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The interaction with extreme minimum temperatures was only statistically sig-
nificant in the case of heatwaves and all ages. In a given ABS, on a heatwave day 
coinciding with an extreme minimum temperature, the risk of death was almost four 
times higher than on another day (RRmain+interaction = 1.5542 vs. RRheatwave = 1.153).

Figure S1 in the Supplementary material shows the results of the estimation of 
the second-order interactions between heatwaves, minimum temperature extremes, 
and the average net income quartile of each ABS (in the remaining second-order 
interactions the 95% credibility intervals for these interactions contained 1 (i.e. 
they were not statistically significant). We see that the results described above were 
reproduced. On a heatwave day in which there was also an extreme minimum tem-
perature in an ABS located in the second quartile of income, the RR of the main 
and both interaction effects was 2.44 (RRheatwave = 1.153) for all ages and 36.73 
(RRheatwave = 1.534) for those subjects aged 65  years or more, i.e. 9.41 and 66.91 
higher than those ABS located in the first quartile (i.e. the most disadvantaged).

4 � Discussion

Using our model, we estimated that excess deaths attributed to extreme heat in the 
summer of 2022 in Catalonia were slightly more than three times those estimated 
using the MoMo model. This difference could be attributed to the effects of the 
biases incurred with the MoMo model. In particular, the exposure misclassification, 
a consequence of using the province as a geographic unit, and the bias caused by not 
considering the spatial variability within the geographical unit (i.e. simply averaging 
the maximum temperature observed at the meteorological stations in the province). 
As we mentioned, when left uncorrected both biases led to an underestimation of the 
effect of extreme temperatures on excess mortality.

Both Tobías et al. (2023a) and Ballester et al. (2023) estimated that actual heat-
attributable deaths were two and a half times higher than the MoMo estimates. In 
addition to the fact that both provided estimates for the whole Spanish territory, 
there are some further differences with respect to our model.

Tobias et al. (2023b) did not analyse the months of September and only took into 
account mortality in provincial capitals. Although it is very likely that in their case, 
as in ours, the effect of exposure classification on the estimator consistency may 
have been negligible since, by using the provincial capitals, the within-area expo-
sure variability would have been minimized, they did not, however, consider the spa-
tial variability within the geographic unit by averaging the observed temperatures. 
This spatial variability could be particularly important in the city of Barcelona, ​​with 
four meteorological stations separated by an average of 5  km (standard deviation 
2 km, median 5.30 km, Q1 3.25 km, Q3 6.66 km) and with the stations at a mean 
altitude of 132.55 m (standard deviation 188.14 m, median 56 m, Q1 13.50 m, Q3 
328.15 m). In Ballester et  al. (2023), however, while they do not present the bias 
caused by ignoring the spatial variability of temperature within the geographic 
unit, since they used temperature data predicted in the high-resolution ERA5-Land 
reanalysis (European Centre for Medium-Range Weather Forecasts 2023) which 
takes into account such variability, it was not free from exposure misclassification. 
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Ballester et  al. (2023) used the 59 NUTS 3 into which Spain is divided. In the 
case of Spain, NUTS 3 corresponds to the province and each one of the Canary 
and Balearic Islands. However, in the latter case, Ibiza and Formentera are grouped 
together and are considered three NUTS 3, instead of four like the actual number 
of islands (i.e. Mallorca, Menorca and Ibiza-Formentera). However, neither we nor 
Tobias et al. (2023a) nor Ballester et al. (2023) were free from Berkson bias, so the 
confidence intervals (credibility in our case) may have been wider than appropriate. 
It should be noted, however, that in Ballester et al. (2023), the 95% confidence inter-
val estimator also tripled the official estimates, as in our case (Tobías et al. 2023a, 
did not provide the confidence interval).

As regards the analysis of the risk of dying, we found that it was not necessary for 
a heatwave to occur for the risk of dying to increase, it was enough for the maximum 
temperature to be extreme, that is, above the trigger temperatures (i.e. the 95th per-
centile of the distribution of maximum temperature during the summer months for 
each of the months and for each ABSs). On those days, the risk of dying increased 
in a range between 15% (in heatwaves) and 32% (in extreme maximum tempera-
tures). In fact, along the same lines as our results, although using a different model 
with other objective, Tobias et al. (2023a and 2023b) found that excess deaths also 
occur with extreme heat and not only in heatwaves.

We estimated a lagged effect of maximum temperature extremes on mortality 
equal to one week, while that of heatwaves was three days. Tobías et  al. (2023a), 
using the daily average temperature, also found lagged effects of up to a week.

We found effect modifiers of the risk of dying on a day with extreme heat 
(extreme maximum temperature and heatwave), both at the individual level: (being 
65  years or older), and at the contextual (the ABS) level: high relative humidity, 
extreme minimum temperature, and low income (first and second quartiles). When 
an ABS was in the most economically disadvantaged area (first quartile) the risk 
of dying in the all ages case, tripled in extreme maximum temperatures days, 
and doubled, during heatwaves, and was three times higher in heatwaves, in sub-
jects aged 65 years or older (in all cases compared to the fourth quartile, the least 
disadvantaged).

Since we found that the effect of maximum temperature extremes on mortality 
occurred earlier than that of heatwaves (7-day delay vs. 3-day delay, respectively), 
some harvesting effect may have occurred, with fewer subjects at risk of dying (i.e. 
more dying earlier) when heatwaves occurred. This would be reflected in, firstly, a 
lower risk (for all ages) in the case of heatwaves (1.323 in extreme maximum tem-
peratures and 1.153 in heatwaves). Furthermore, this harvesting effect had more 
influence in subjects aged 65 years or older on very humid days (fourth quartile) and, 
above all, during heatwaves in subjects living in the most economically disadvan-
taged ABSs (compare RRmain+interaction heatwave:Q1 income = 1.295 vs. RRheatwave = 1.534; 
with RRmain+interaction extreme maximum temperature:Q1 income = 2.420 vs. RRheatwave = 1.508).

Again, using different approaches with different objectives, Ballester et al. (2023) 
and Freitas et al. (2022), for the summer of 2022, and Gasparrini et al. (2022), for 
the period 2000–2019, found that excess mortality attributed to extreme heat was 
higher in older population groups. Thus, Ballester et al. (2023), using data from 823 
contiguous regions in 35 European countries, found higher heat-related mortality 
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rates in the age group 65 years or older, although the rates were higher in men than 
in women for the age group 65–79 years, but higher in women than in men for peo-
ple aged 80 + years. For Catalonia, Freitas et  al. (2022) point out an excess mor-
tality in the summer of 2022, compared to the summer of 2019, for the age group 
55 years or older, finding the maximum differences in the 80–84 age group in both 
sexes and over 90 years in women. Gasparrini et al. (2022), analysing 34,753 lower 
super output areas across England and Wales for 2000–2019, found that, compared 
to the under 65 age group, the 75 to 84 age groups and, above all, those 85 years and 
older, had a higher risk of death attributed to extreme heat.

As regards socioeconomic status, as we have noted, only Freitas et al. (2022) took 
socioeconomic status into account. They point out that in the rural areas and in the 
most socioeconomically depressed urban ABSs, the excess of deaths attributed to 
extreme heat was higher. However, the raw and standardized rates (by age and sex) 
were not significantly higher than those of the remaining areas.

5 � Conclusions

Summing up, our analysis reveals that extreme heat during the summer of 2022 in 
Catalonia had a far greater mortality impact than previously estimated, with excess 
deaths three times higher than those derived from the MoMo model (49.41% vs. 
15.37%). This underestimation likely arises from methodological biases, particu-
larly exposure misclassification and spatial aggregation of temperature data, which 
obscure localized heat effects. Notably, mortality risk increased not only during 
heatwaves (15% higher risk) but also on days with isolated extreme temperatures 
(32% higher risk), with delayed effects lasting up to one week for extreme heat and 
three days for heatwaves. These lagged patterns suggest prolonged physiological 
stress from sustained heat exposure, even in the absence of formal heatwave con-
ditions. Vulnerability was further exacerbated by individual and contextual factors: 
older adults (≥ 65 years), residents of low-income areas (where risk tripled during 
extreme heat), and populations exposed to high humidity or elevated night-time tem-
peratures experienced disproportionately high impacts. Our findings underscore the 
need to move beyond heatwave-centric warnings and adopt more granular, spatially 
explicit risk assessments that account for both immediate and delayed heat effects, 
particularly in socioeconomically vulnerable communities.

Our study may have several limitations. First, the observational ecological design 
precludes individual-level inferences (to avoid ecological fallacy) and causal inter-
pretations, while unmeasured biases inherent to such designs may persist. However, 
we addressed this by adjusting for observed confounders and incorporating unstruc-
tured and structured random effects, which captured unobserved spatial and tem-
poral dependencies at the small-area level. Second, generalizability is constrained 
because: SIDIAP records only primary care-reported deaths, omitting 35.4% of 
hospital-recorded deaths in Catalonia (Freitas et al. 2022), and 24% of ABS areas 
(18.4% of the population) were excluded. These excluded areas, managed outside 
the public health service, cluster in warmer regions (e.g. southern Catalonia), poten-
tially biasing estimates, though the direction of this bias remains indeterminate. 
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Third, while our 95th percentile trigger temperature aligns with the Spanish Min-
istry of Health’s National Plan (2023) and prior work (Tobías et al., 2023a, 2023b), 
it reflects a meteorological rather than physiological threshold. Notably, our prov-
ince-specific median thresholds were lower than MoMo’s epidemiologically derived 
values (Supplementary Material, Table S2). Finally, exposure misclassification may 
arise as individuals’ mobility (e.g. workplaces, holidays) means residential ABS 
temperatures may not reflect true exposure. However, this misclassification is likely 
non-differential, equally affecting all subjects.

These limitations can largely be offset by the strengths of our study. Firstly, we 
significantly reduced exposure misclassification by working with much smaller geo-
graphic units than typically used in comparable studies. Estimates at a smaller geo-
graphic level have only been carried out by Gasparrini et al. (2022), who analysed 
temperature-related mortality across 34,753 lower super output areas (LSOAs) in 
England and Wales, and Quijal-Zamorano et al. (2024), who conducted neighbour-
hood-level analyses for Barcelona’s 73 districts. Secondly, our hierarchical Bayesian 
spatiotemporal model explicitly accounted for spatial variability, generating predic-
tions of maximum temperature and other meteorological variables for each ABS. 
This approach prevented underestimation of extreme temperature effects on mortal-
ity. Finally, by incorporating spatial dependence controls—a methodological refine-
ment rarely implemented in small-area analyses—we obtained more reliable estima-
tors with appropriate variances. As demonstrated by Quijal-Zamorano et al. (2024), 
such spatial adjustments are crucial for producing stable, plausible estimates, par-
ticularly in areas with low mortality counts where conventional models often fail.

Regarding future research directions, we would like to expand our research along 
four main lines. First, we will expand both the population, i.e. from the 288 ABSs 
analysed (81.6% of the population and 76% of the ABSs in which the territory of 
Catalonia is divided) to the 379 ABSs (100% of the population and of the ABSs); 
and the time period, considering 2023 to 2024, years in which there could have 
been higher temperatures (average and maximum), a greater number of extreme epi-
sodes, and a greater effect on mortality than in 2022. Second, we will explore the 
interaction between extreme heat and exposure to air pollution during the summer 
months, considering both average and extreme pollution levels. Third, we will incor-
porate individual-level data, not only for mortality but also for morbidity, enabling 
us to control for both contextual and individual-level confounders such as sex, age, 
comorbidities, and individual income, among others. Finally, we plan to advance 
the modelling of the spatiotemporal dimension. Rather than treating space and time 
independently (as in our current approach), we will examine them as dependent but 
separable—as in Quijal-Zamorano et  al. (2024)—and, importantly, as dependent 
and non-separable, allowing for more realistic and nuanced inference.

Climate change projections suggest increasing importance of our research, with 
rising global temperatures expected to increase frequency, intensity, duration, and 
severity of heat waves (Barriopedro et al. 2023; EPA 2025). This trend poses signifi-
cant challenges for public health systems, which must adapt to the growing threat. 
Effective strategies include early warning systems, public education campaigns, and 
infrastructure improvements to reduce urban heat islands.
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In conclusion, our results suggest that one should: (i) minimize the effects of 
exposure misclassification by using smaller geographic units than those used in 
other studies; (ii) explicitly took spatial variability into account, using for example a 
hierarchical Bayesian spatiotemporal model; and (iii) control for spatial and tempo-
ral dependencies.
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